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 Previous studies of code-learning behaviors have been conducted in structured educational settings, utilizing 
student engagement metrics such as homework submission, task completion, and interactions with instructors. 
These types of metrics, however, are absent in open online coding platforms. To characterize autonomous code-
learning behaviors in an online community, this work applied Benford’s law to analyze user engagement metrics 
of trending projects on Scratch, the world’s largest online coding platform for young learners. Statistical analysis 
revealed that the extent of conformity to Benford’s law is independent of the project categories. Of all four user 
engagement metrics, the views metric exhibited the strongest conformity to Benford’s law, while the remixes 
metric–the metric most closely associated with code-learning behaviors–showed the greatest deviation from 
Benford’s law. This was confirmed by Pearson’s χ² test, Nigrini’s (2012) mean absolute deviation test, and an 
evaluation of the mantissas of the user engagement metrics. This study demonstrates that the extent of 
conformity to Benford’s law can be used as novel features for characterizing autonomous code-learning behaviors 
in unsupervised online settings. The results of this work pave the way for future studies to correlate the extent 
of conformity to Benford’s law with specific elements of code that attract autonomous learning, providing 
opportunities to optimize the content and design of online coding platforms. 

Keywords: computer science education, computational thinking skills, code-learning behaviors, data mining, 
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INTRODUCTION 

Previously, studies on code-learning behaviors have been 
conducted in classroom settings or instructor-led online 
environments, where conventional student engagement 
metrics are assessed. For example, Chen et al. (2020) used 
machine learning to study the code-learning behaviors of 69 
students enrolled in a Java programming course, analyzing 
engagement metrics like homework effort (e.g., number of 
specific failures, number of on-time submissions, and total 
submissions) and homework time (e.g., time to first 
submission, time to last submission, and duration in a specific 
state of failures). Stewart et al. (2021) examined the code-
learning behaviors of ten middle school female students 
enrolled in a virtual coding camp using engagement metrics 
such as responses to prompts via chat, student presentations, 
and code-sharing. Sun et al. (2021) studied two instructional 
modes for teaching coding to 31 students–instructor-directed 
lecturing and learner-centered unplugged programming–
using classroom audio and video recordings, student surveys, 

and interviews to assess code-learning behavioral patterns. 
Alebaikan et al. (2022) studied the online code-learning 
experience of 16 female middle schoolers, generating data 
from interviews, the teacher’s diary, and content analysis of 
activities recorded in student progress reports. While many 
studies have utilized conventional student engagement 
metrics–such as attendance, help-seeking, homework 
submission, task completion, interactions with instructors, 
and logs of various study activities–to study code-learning 
behaviors in well-structured educational settings, these types 
of metrics are absent in unsupervised online coding platforms, 
where millions of users engage in autonomous learning. In 
contrast to the numerous studies of student code-learning 
behaviors in formal educational settings, to the best of our 
knowledge, there have been no parallel investigations of 
autonomous learning behaviors in online coding communities.  

Benford’s law, also known as the first-digit law or the law 
of anomalous numbers, describes a common statistical 
phenomenon in the distribution of leading digits of many 
naturally occurring datasets. First discovered by Newcomb 
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(1881) and later popularized by Benford (1938), the first-digit 
law can be used to analyze population sizes, stock values, 
scientific measurements, and tax records (Nigrini, 2012, p. 25). 
The law’s fundamental principle dictates that in many non-
synthetic datasets, a leading digit of “1” appears significantly 
more frequently than any other digit, at an expected 30.1% 
frequency. The expected frequency of occurrence decreases as 
the leading digit increases, to 17.6% for “2” as a leading digit 
and down to an expected mere 4.6% appearance rate for “9” as 
a leading digit (Benford, 1938). Benford’s law can provide 
insights into unexpected patterns, anomalies, or even fraud 
that a dataset might contain based on conformity of the data. 
The first-digit law’s numerous applications include assessing 
the quality of synthetic images without the need for any 
reference images (Varga, 2021), identifying dynamic 
transitions in cardiac models (Seenivasan et al., 2016), and 
evaluating the conformity of cancer registry data to expected 
patterns (Crocetti & Randi, 2016). Of particular interest, the 
extent of conformity to Benford’s law has recently been used 
as novel features to train artificial intelligence models (for 
example, Caffarini et al., 2022). Considering the large number 
of datasets on learning behaviors already accumulated by 
educators and researchers, applying Benford’s law to study 
learning behaviors could uncover new insights and potentially 
enhance educational practices.  

Due to the vast amounts of data voluntarily provided by its 
users, social media contains many opportunities for studying 
trends in data, user tendencies, and human behaviors. 
Datasets created from user interactions on popular social 
media platforms such as Facebook, Instagram, Twitter, or 
TikTok can be used by researchers to track shifts in internet 
trends, monitor changes in public opinion over various topics, 
or analyze internet culture (Felt, 2016). Social media data is 
also useful in studying the impact of the spreading of 
information, political discourse, and the dynamics of various 
online communities (Abkenar et al., 2021). Many datasets 
gathered from mainstream social media conform to Benford’s 
law, and those that don’t could suggest unknown or 
unexpected user behaviors, data irregularities, or 
manipulation. The distributions of different user engagement 
metrics, such as views or reposts, have been found to closely 
follow Benford’s law, and can therefore be used to discern 
patterns. Datasets mined from mainstream social media can 
both be validated or discredited by making statistical 
comparisons to the expected distribution derived from 
Benford’s law (e.g., Bhosale & Di Troia, 2022). 

Scratch (https://scratch.mit.edu) is a visual programming 
language and online coding platform designed to introduce 
programming concepts to young learners, with over 120 
million registered users and more than 150 million published 
projects. Developed by the Lifelong Kindergarten Group at the 
MIT Media Lab, Scratch provides a user-friendly environment 
for creating various projects such as games, animations, and 
stories. Scratch’s intuitive visual interface, drag-and-drop 
code blocks, and simple tutorials appeal to young learners, as 
the need for traditional text-based programming is eliminated. 
Acting as an integrated coding and social media platform, 
Scratch encourages its users to publish their projects, remix 
the creations of others, leave comments, and interact with the 
online community. While social media data has proven 

valuable for understanding student learning (Su & Lai, 2021) 
and studies have used Scratch to teach computational thinking 
to small groups in classroom settings (e.g., Erümit & Şahin, 
2020; Kwon & Cheon, 2019; Kwon et al., 2018), online coding 
communities, including Scratch, have not yet been studied and 
analyzed utilizing data mining and data analytic techniques to 
extract valuable statistics related to the social interactions and 
autonomous learning behaviors of their users.  

To address these gaps, this work takes the first steps in 
investigating the vast amount of social interaction and 
engagement data on Scratch by collecting and examining the 
projects featured on its trending page to extract statistical 
information on user engagement metrics in terms of their 
conformity to Benford’s law. To the best of our knowledge, this 
study is the first to investigate learning behaviors using 
Benford’s law. Our study unequivocally demonstrates that 
while the views metric of Scratch, like similar metrics in 
mainstream social media, obeys Benford’s law, the remixes 
metric, which involves active coding, deviates dramatically 
from this law. These findings indicate that the extent of 
conformity to Benford’s law can serve as a highly sensitive 
measure for characterizing code-learning in a social network 
dominated by autonomous learning activities, where 
conventional user engagement metrics are non-existent. 
Further studies can, for example, correlate the extent of 
conformity to Benford’s law with the level of computational 
thinking skills exhibited in Scratch projects. These lines of 
research are expected to offer additional insights into specific 
elements in Scratch code that attract autonomous learning. 
Such insights could potentially lead to the optimization of 
online coding platforms, benefiting both autonomous learning 
within online communities and instructor-led learning in 
educational settings that utilizes popular programming 
interfaces such as Scratch. 

METHODS 

Benford’s Law 

Let 𝐷𝐷𝑖𝑖 be the ith digit of an arbitrary number n. Benford’s 
law denotes that for every positive integer k ∈ 𝑍𝑍+  ∼ {1}, all 𝑑𝑑1 
∈ {1, 2, 3 … , 9} and all 𝑑𝑑𝑗𝑗  ∈ {0, 1, 2, 3, … , 9} with j ∈ {2, 3, 4, … 
, k}, the probability of n naturally occurring with its first k 
significant digits given by d1, ..., dk is (Nigrini, 2012, p. 13): 

𝑃𝑃(𝐷𝐷1 = 𝑑𝑑1 ,⋯ ,𝐷𝐷𝑘𝑘 = 𝑑𝑑𝑘𝑘) = 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 + �∑ 𝑑𝑑𝑖𝑖 ∗ 10𝑘𝑘−𝑖𝑖𝑘𝑘
𝑖𝑖=1 �−1�. (1) 

Note that since k ∈ 𝑍𝑍+  ∼ {1}, we can calculate the 
probability of a specific leading digit by summing the 
probabilities of all numbers starting with that digit in Eq. (1) 
(Benford, 1938): 

𝑃𝑃(𝑑𝑑) = 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 + 1
𝑑𝑑
�, (2) 

where d is the leading digit. 

Data Collection and Analysis 

Scratch’s trending page consists of six project categories: 
animations, art, games, music, tutorials, and stories. Each 
Scratch project has four user engagement metrics: loves, 
favorites, remixes and views. Users can browse through 
projects in each category and interact with them by 

https://scratch.mit.edu/
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viewing/playing the projects and leaving loves and favorites. 
Users are also able to remix a project, where they can 
customize, add to, or fully revamp another user’s project and 
republish it as their own while automatically crediting the 
original author. In contrast to views, loves, and favorites, the 
remixes metric is associated with active coding. 

This work utilizes Google’s free web scraping tool, Web 
Scraper (https://webscraper.io), to automatically extract the 
counts of all user engagement metrics of each trending project 
from all six project categories and exports them to Microsoft 
Excel files. The data collection does not require ethical 
approval since the information is freely available in the public 
domain. The Web Scraper, which was installed as a Chrome 
Extension, had over 600,000 users as of 2023. We utilized a 
recursive pagination handler that allows verification of 
successful data collection by comparing the last scraped 
records with those on the initial pages. The selector graph used 
for data collection in this study is provided in Appendix A 
(Figure A1). 

While Pearson’s Chi-square (χ²) test (Bock et al., 2019, p. 
621) is the go-to test when comparing an experimental 
distribution with a theoretical one and some authors are still 
using it to test conformity to Benford’s law, its limitations are 
well-documented due to its over-sensitivity to minor 
fluctuation in digits when the size of the dataset is large 
(Nigrini, 2012, p. 158), such as in the current study. To 
overcome this limitation, the mean absolute deviation (MAD) 
test has been developed and widely accepted for testing 
conformity to Benford’s law (e.g., da Silva et al., 2020; da Silva 
Azevedo et al., 2021; Nigrini, 2012, p. 158). Additionally, we 
used the strong Benford’s law (Berger & Twelves, 2018), which 
applies to the entire number rather than only its leading digit, 
to address the limitation of focusing solely on leading digits. 

Let 𝑂𝑂𝑖𝑖 represent the observed occurrence of leading digit i, 
let N represent the total number of records, and let 𝑃𝑃𝑖𝑖 
represent the frequency of the occurrence of leading digit i 
expected from Benford’s law. The standardized residual of a 
leading digit can be found by subtracting the expected 
occurrence from the observed occurrence and dividing the 
difference by the square root of the expected occurrence (Bock 
et al., 2019, p. 624): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑂𝑂𝑖𝑖−𝑁𝑁𝑃𝑃𝑖𝑖
�𝑁𝑁𝑃𝑃𝑖𝑖

. (3) 

Pearson’s Chi-square statistic, denoted by χ², is found by 
summing the squared standardized residuals between 
observed and expected occurrences (Eq. [3]) for all leading 
digits 1 through 9 (Bock et al., 2019, p. 621): 

 𝜒𝜒² = ∑ (𝑂𝑂𝑖𝑖−𝑁𝑁𝑃𝑃𝑖𝑖)2

𝑁𝑁𝑃𝑃𝑖𝑖
9
𝑖𝑖=1 . (4) 

While null hypothesis significance tests, such as Pearson’s 
Chi-square test, are prone to oversensitivity to insignificant 
spikes with large sample sizes, the MAD test is independent of 
the sample size and is known for its well-tested ability to 
assess conformity to Benford’s law (Nigrini, 2012, p. 158). The 
MAD score can be calculated by taking the average of the 
absolute values of the differences between the observed 
frequency and expected frequency from Benford’s law for each 
leading digit 1 through 9 (Nigrini, 2012, p. 158): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
9
∑ |𝑂𝑂𝑖𝑖−𝑁𝑁𝑃𝑃𝑖𝑖|

𝑁𝑁
9
𝑖𝑖=1 . (5) 

For the theoretical Benford distribution, the MAD score is 
zero. A higher MAD score for a distribution of leading digits 
indicates greater deviation from Benford’s law, and vice versa. 
The ranges of critical MAD scores for conformity to Benford’s 
law, as described by Nigrini (2012, p. 160), are, as follows: 0–
0.006 for close conformity, 0.006–0.012 for acceptable 
conformity, 0.012–0.015 for marginally acceptable 
conformity, and > 0.015 for nonconformity. 

All data analysis was performed using computer programs 
written in Python 3.12 with the following imported libraries: 
os, pandas, matplotlib, math, numpy, scipy.stats, seaborn, and 
scikit_posthocs. The nonparametric Kruskal-Wallis test, 
followed by Dunn’s post-hoc test, was employed to compare 
MAD scores across both different project categories and 
different user engagement metrics. 

RESULTS 

Data mining located 1,285 projects from the animations 
category, 6,431 from the art category, 2,536 from the games 
category, 2,315 from the music category, 2,138 from the 
tutorials category, and 6,768 from the stories category. The 
successful project data retrieval rates ranged from 99.5% to 
100% for all six categories and all sample sizes in the study are 
well above the sample sizes used in many studies regarding 
Benford behavior (e.g., Druică et al., 2018). 

We first assess the extent of conformity to Benford’s law by 
the four user engagement metrics in all project categories. The 
distribution of the percentage frequencies of leading digits for 
the animations project category as well as the theoretical 
Benford distribution (Eq. [2]) are shown in Figure 1. The 
percentage frequencies of leading digits for all six project 
categories are given in Table 1. Rather than a uniform 
distribution of leading digits, the datasets exhibit Benford-like 
behavior via a trend of decreasing percentage frequencies from 
a leading digit of 1 to 9 as displayed in Figure 1 and Table 1.  

 
Figure 1. First digit distributions of the user engagement 
metrics in the animations category: (A) loves, (B) favorites, (C) 
remixes, & (D) views (green bars represent the observed 
percentage frequencies of leading digits, while the red circles 
depict the percentage frequencies of leading digits predicted 
by Benford’s law) (Source: Author) 

https://webscraper.io/
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Shown in Table 2 are the results of Pearson’s Chi-square 
test and the MAD test, performed to categorize levels of 
conformity to Benford’s law for each user engagement metric 

under all six project categories. Standardized residuals for 
Pearson’s Chi-square test (Eq. [3]) are provided in Appendix A 
(Table A1). 

Table 1. Percentage frequencies for each leading digit 

Category User engagement 1 2 3 4 5 6 7 8 9 

Animations 

Loves 29.56 20.20 14.59 9.20 8.35 5.54 5.07 3.51 3.98 
Favorites 32.06 19.65 14.32 10.34 7.64 5.09 4.14 3.50 3.26 
Remixes 53.72 19.42 10.55 5.04 3.12 2.88 2.64 1.44 1.20 
Views 32.06 17.78 11.47 8.66 7.49 6.79 7.10 4.29 4.37 

Art 

Loves 26.82 19.17 15.61 10.73 8.66 6.76 4.98 4.31 2.95 
Favorites 31.55 22.62 14.85 9.44 6.51 5.06 4.45 3.15 2.36 
Remixes 56.56 15.95 8.71 5.46 3.46 2.94 3.67 1.89 1.36 
Views 32.90 16.67 10.96 8.55 7.40 6.59 5.91 5.77 5.24 

Games 

Loves 32.78 23.37 13.52 9.37 6.56 4.98 3.99 3.08 2.33 
Favorites 34.37 23.96 13.18 8.90 6.78 4.33 3.31 2.86 2.33 
Remixes 51.77 19.11 8.73 6.58 3.80 3.54 2.28 2.28 1.90 
Views 29.27 18.60 12.12 9.12 7.50 6.67 6.24 5.77 4.70 

Music 

Loves 26.65 18.33 15.51 11.09 8.71 6.28 5.55 4.12 3.77 
Favorites 27.10 20.50 15.61 10.90 8.70 6.55 4.80 3.14 2.69 
Remixes 50.14 17.99 11.05 6.09 4.25 2.83 2.97 2.69 1.98 
Views 30.36 17.37 12.21 9.74 6.89 6.19 6.97 6.15 4.11 

Tutorials 

Loves 48.67 20.61 10.63 6.51 4.45 3.00 3.00 1.83 1.31 
Favorites 49.79 20.97 10.43 6.68 3.60 3.03 2.47 1.75 1.28 
Remixes 64.67 15.27 9.28 3.29 2.99 1.80 2.10 0.30 0.30 
Views 34.05 18.48 12.25 8.89 7.20 5.75 4.72 4.68 3.98 

Stories 

Loves 45.76 18.29 11.06 7.70 5.12 3.56 3.64 2.71 2.17 
Favorites 45.26 18.97 11.53 6.97 5.29 4.15 2.84 2.51 2.48 
Remixes 51.10 16.75 10.31 5.86 5.03 3.22 3.87 2.13 1.74 
Views 33.16 18.37 12.93 9.20 7.02 6.22 5.40 4.21 3.49 

 

Table 2. Goodness-of-fit tests 

Category User engagement 
Pearson’s χ² test MAD test 

χ² p MAD score Conformity 

Animations 

Loves 21.3 6.3 × 10–3 1.1 × 10–2 Acceptable conformity 
Favorites 30.6 1.7 × 10–4 1.4 × 10–2 Marginally acceptable conformity 
Remixes 138.4 < 1.0 × 10–4 5.6 × 10–2 Nonconformity 
Views 10.0 2.6 × 10–1 7.7 × 10–3 Acceptable conformity 

Art 

Loves 146.3 < 1.0 × 10–4 1.5 × 10–2 Marginally acceptable conformity 
Favorites 285.7 < 1.0 × 10–4 2.0 × 10–2 Nonconformity 
Remixes 343.9 < 1.0 × 10–4 5.9 × 10–2 Nonconformity 
Views 54.6 < 1.0 × 10–4 9.3 × 10–3 Acceptable conformity 

Games 

Loves 135.4 < 1.0 × 10–4 2.1 × 10–2 Nonconformity 
Favorites 175.8 < 1.0 × 10–4 2.5 × 10–2 Nonconformity 
Remixes 211.4 < 1.0 × 10–4 5.2 × 10–2 Nonconformity 
Views 6.7 5.7 × 10–1 4.9 × 10–3 Close conformity 

Music 

Loves 41.8 < 1.0 × 10–4 1.3 × 10–2 Marginally acceptable conformity 
Favorites 77.9 < 1.0 × 10–4 1.8 × 10–2 Nonconformity 
Remixes 160.8 < 1.0 × 10–4 4.5 × 10–2 Nonconformity 
Views 15.6 4.8 × 10–2 5.6 × 10–3 Close conformity 

Tutorials 

Loves 483.3 < 1.0 × 10–4 4.9 × 10–2 Nonconformity 
Favorites 499.3 < 1.0 × 10–4 5.2 × 10–2 Nonconformity 
Remixes 209.1 < 1.0 × 10–4 7.6 × 10–2 Nonconformity 
Views 24.5 1.9 × 10–3 1.1 × 10–2 Acceptable conformity 

Stories 

Loves 931.5 < 1.0 × 10–4 3.6 × 10–2 Nonconformity 
Favorites 870.0 < 1.0 × 10–4 3.7 × 10–2 Nonconformity 
Remixes 366.0 < 1.0 × 10–4 4.7 × 10–2 Nonconformity 
Views 64.9 < 1.0 × 10–4 9.3 × 10–3 Acceptable conformity 
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The results listed in Table 2 indicate a strong negative 
correlation between the p-values from Pearson’s Chi-square 
test (Eq. [4]) and the MAD scores (Eq. [5]). The results of Table 
2 also confirm the observation made by Nigrini (2012, p. 153) 
that Pearson’s Chi-square test can be overly sensitive for large 
sample sizes, such as the ones in this study. Consequently, for 
assessing differences in conformity to Benford’s law across the 
six project categories and the four user engagement metrics, 
only the MAD test results are utilized. To compare 
Benfordness across different project categories, the MAD 
scores of the four user engagement metrics of each project 
category were averaged. Part A in Figure 2 compares the mean 
MAD scores of the animations, art, games, music, tutorials, 
and stories project categories using a box plot, with each box 
in the plot representing a distinct project category. The 
Kruskal-Wallis test on the six groups of MAD scores outputs a 
Kruskal-Wallis statistic of 3.1 and a p-value of 0.68, 
demonstrating that there is no statistically significant 
difference in Benfordness across the different project 
categories. The test concludes that rather than being category-
specific, the extent of conformity to Benford’s law follows a 
similar pattern for all six project categories. 

Next, we test whether different user engagement metrics 
averaged across different project categories demonstrate 
statistically different levels of conformity to Benford’s law 
since loves, favorites, remixes, and views exhibit varying 
degrees of association with learning behaviors. As shown in 
Table 2, the views metric consistently has the largest p-values 
across all project categories. The p-values for the views of the 
animations and games project categories are well above the 
commonly used significance level of 0.05, despite Pearson’s 
Chi-square test being overly stringent for our purpose. Table 
2 indicates that for all project categories, the views metric falls 
into the close conformity or acceptable conformity range by 
the MAD test. However, for the remaining loves, favorites, and 
remixes metrics, adherence to Benford’s law mostly falls into 
the nonconformity range. In particular, all remixes metrics lie 
in the nonconformity range. Only the favorites metric for the 
animations category and the loves metric for the art and music 

categories are placed in the marginally acceptable conformity 
range, while the loves metric for the animations category was 
the only non-views metric categorized into the acceptable 
conformity range, as shown in Table 2. For comparing 
conformity to Benford’s law across different user engagement 
metrics, the MAD score of each user engagement metric 
averaged over the six project categories was computed. The 
comparison is shown in part B in Figure 2 via another box plot. 
The Kruskal-Wallis test on the four groups of user engagement 
metrics generated a Kruskal-Wallis statistic of 18.1 and a p-
value of 0.00042, indicating statistically significant differences 
among the mean MAD scores of the user engagement metrics. 
When comparing loves with favorites, loves with remixes, 
loves with views, favorites with remixes, favorites with views, 
and remixes with views, Dunn’s post-hoc test yielded the 
following p-values: 0.668, 0.032, 0.037, 0.086, 0.012, and 
0.000024, respectively. The loves-favorites comparison 
indicated the least difference in conformity to Benford’s law 
while the remixes-views comparison indicated the greatest 
difference. 

Lastly, we examine the density distributions of the 
mantissas of the logarithms of the user engagement metrics, 
as the stringent form of Benford’s law requires a uniform 
distribution of the fractional part of the logarithms of a dataset 
(Berger & Twelves, 2018). This stronger form of Benford’s law 
is fundamental and more rigorous than Eq. (2). Displayed in 
Figure 3 are the density distributions for the animations 
project category. Note the large difference in uniformity 
between the densities of the mantissas of the views and 
remixes metrics shown in Figure 3. The standard deviations of 
the binned densities for the mantissas for the animations 
category are 6.1%, 6.9%, 14.5%, and 1.5% for loves, favorites, 
remixes, and views, respectively. The density distributions of 
the mantissas for all project categories are listed in Table 3. 
All six project categories follow the same general pattern for 
the standard deviations of the densities of the mantissas: 
views < loves < favorites < remixes. This pattern corroborates 
results presented in Table 2 and part B in Figure 2.  

 
Figure 2. Box plots depicting the MAD scores across different project categories (A) and different user engagement metrics (B) 
(Source: Author) 
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DISCUSSION 

Though many studies have been conducted on user 
interaction data mined from mainstream social media 
platforms, to the best of our knowledge, this work is the first 
to extract and analyze user engagement metrics of an online 
coding community, Scratch, which combines both social and 
learning components. This work found that while all views 
metrics closely conform to Benford’s law, approximately 58% 
of user engagement metrics across the six project categories 
were categorized into the non-conformity range with a MAD 
score above 0.015. It was determined that there is no 
statistically significant difference in Benfordness when 
comparing the six project categories (Kruskal-Wallis p-value = 
0.68 >> 0.05; also see part A in Figure 2), but a great distinction 
among user engagement metrics averaged across the six 
project categories was found (Kruskal-Wallis p-value = 0.00042 
<< 0.05; also see part B in Figure 2). 

 One potential influence on these results can be attributed 
to Scratch’s unique role as both a code-learning platform and 
a form of social media for young learners. A Scratch user may 
run a project as many times as they like, contributing to 
multiple recorded views on the project despite them all from 
one unique viewer. The total view counts of a project are the 
result of multiplying the number of viewers by the number of 
views per viewer, and as explained by Scott and Fasli (2001), 
mathematically, datasets adhere more closely to Benford’s law 
when they are formed by multiplying two or more independent 
variables. Therefore, it is not surprising that the views metrics 
of all six project categories were found to both consistently and 
closely adhere to Benford’s law. Although a Scratch user can 
view a project multiple times, projects are limited to at most 
one recorded love or favorite per user. As a result, the 
mechanism of enhancing Benfordness via the multiplication 
effect is not applicable to the loves and favorites metrics.  

As previously stated, the remixes user engagement metric 
stands out from the other three as it is the metric most strongly 
associated with the code-learning behaviors of Scratchers. 
Mainstream social media platforms have components similar 
to Scratch’s views, loves, and favorites metrics but do not have 

any features resembling the ability to remix projects. When a 
Scratch user plans to remix a project, they may have to study 
the project in-depth to understand where and how they can 
modify the project and add their own code. This technical 
experience offers valuable insights into programming logic, 
design principles, and problem-solving techniques, especially 
if the original project is complex. Unlike viewing and playing, 
remixing a project is associated with active code learning, 
often going beyond any built-in Scratch tutorials and more 
advanced online guides. By building upon existing projects, a 
user can experiment with new ideas, functionalities, and 
designs that are difficult to create without a template. 
Interestingly, the data shows that the remixes metric deviates 
the furthest from Benford’s law, indicated by the Chi-square 
and MAD tests (see Table 2 and Figure 2), as well as the 
standard deviations of the mantissas of the user engagement 
metrics (see Table 3 and Figure 3).  

Other than the project-level user engagement metrics 
analyzed in this work, additional sources of information at the 
user level on the Scratch website could be studied, including 
follower count, following count, number of comments, and age 
of users. Scratch also has many other features, such as project 
studios where users can collaborate to build a collage of 
projects with a common theme or purpose. Additionally, 
Scratch has featured project groups aside from the trending 
page, such as the “What the Community is Loving” section and 
the “What the Community is Remixing” section which could 
be analyzed for Benford behavior. Data on these other features 
could be gathered and studied through data mining to provide 
further insights into peer interactions and learning 
experiences of Scratch users. Scratch also offers a comment 

 
Figure 3. Density distributions for the mantissas of the 
logarithms of different user engagement metrics in the 
animations category: (A) loves, (B) favorites, (C) remixes, & 
(D) views. (Source: Author) 

Table 3. Standard deviations of densities (%) for mantissas of 
the logarithms 
Category User engagement Standard deviations 

Animations 

Loves 6.1 
Favorites 6.9 
Remixes 14.5 
Views 1.5 

Art 

Loves 6.3 
Favorites 8.4 
Remixes 15.0 
Views 2.0 

Games 

Loves 8.2 
Favorites 9.0 
Remixes 13.9 
Views 2.1 

Music 

Loves 5.5 
Favorites 6.6 
Remixes 13.6 
Views 1.3 

Tutorials 

Loves 13.9 
Favorites 14.3 
Remixes 18.9 
Views 5.3 

Stories 

Loves 11.1 
Favorites 11.3 
Remixes 12.7 
Views 4.3 
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section under each project, which can be analyzed using 
techniques such as natural language processing.  

A straightforward extension of the current study to most 
online coding platforms is currently not feasible. For example, 
SNAP! (https://snap.berkeley.edu/) is closely modeled after 
Scratch and provides a very similar coding platform. It offers 
users options to view, embed, and download the code of 
published projects. But SNAP! does not report any user 
engagement data. There are no counts of views, loves, 
favorites, or remixes for any projects on SNAP!. Like Scratch, 
Thunkable (https://thunkable.com/solutions/education/) also 
uses a drag-and-drop coding environment, allowing learners 
to build video games by adding various components such as 
buttons, images, and voices, thus turning a passive online 
experience into an engaging educational one. However, 
Thunkable does not publish any user projects. Code.org offers 
a diverse array of instructional courses for teachers and 
students alike, with over 210 million projects created on the 
platform. However, like SNAP!, Code.org does not provide any 
user engagement metrics (https://studio.code.org/projects/ 
public). On the other hand, GitHub provides public counts of 
stars and forks, akin to favorites and remixes in Scratch. 
However, no Benford analysis has been conducted on GitHub. 
In light of the numerous recent efforts in studying code-
learning behaviors, it would be greatly beneficial for all 
educational coding platforms to provide user engagement data 
as these data can provide considerable insights to autonomous 
code-learning behaviors in online communities. 
Understanding these autonomous learning behaviors has 
many potential benefits, such as informing improved content 
and platform design, thereby aiding millions of online 
learners.  

Although this study is limited to the projects featured on 
the trending page of Scratch (N = 21,473), the strategy used in 
this study can be extended to the entirety of Scratch. In 
particular, computational thinking skills, defined by 
abstraction and problem decomposition, logical thinking, 
synchronization, parallelism, algorithmic notions of flow 
control, user interactivity, and data representation, can be 
quantified (Moreno-León et al., 2019) and correlated with the 
extent of conformity to (or deviation from) Benford’s law by 
user engagement metrics. The extent of conformity to 
Benford’s law, in turn, can be used to gauge the development 
of computational thinking skills in an open online coding 
environment with peer support networks such as Scratch. A 
related study of academic publishing networks using Benford’s 
law has been reported recently (Tošić & Vičič, 2021). Such 
studies may not only provide insights into the effectiveness of 
online platform design features but also offer opportunities for 
optimizing code-teaching strategies. As Benford’s law is being 
applied to an ever-increasing array of diverse research areas, 
from detecting weak seismic signals (Díaz et al., 2015) to 
analyzing complex networks including social media networks 
(Morzy et al., 2016), the extent of conformity to Benford’s law, 
including the complex patterns of mantissas of user 
engagement metrics as exemplified by Figure 3, may also 
serve as novel features in artificial intelligence models to study 
social interactions and autonomous learning behaviors in 
online coding communities. 

In addition to the quantitative Benford analysis described 
here, incorporating qualitative data from users’ comments is 
expected to provide a richer, more nuanced understanding of 
autonomous learning behaviors on the Scratch platform. Users 
often share a variety of insights in the Scratch comments 
section, including specific aspects of the projects they found 
engaging, innovative, or enjoyable. These comments can 
reveal users’ emotional responses, preferences, and the 
educational value they perceive in the projects, offering 
important context and depth to the numerical data. By 
examining these comments, we can better understand why 
certain projects are more popular, shedding light on user 
preferences and the impact of specific project attributes. 
Furthermore, comments may include feedback on learning 
outcomes, such as how users apply the knowledge gained from 
others’ projects to their own coding activities. Integrating 
these qualitative insights with the quantitative leading digit 
distributions can provide a more comprehensive view of user 
engagement, linking the observed Benford statistics to the 
underlying motivations behind autonomous code-learning 
behaviors. 

Finally, the Benford analysis highlighted in this study can 
be applied to other online coding platforms such as GitHub and 
online learning environments other than computer 
programming. Outside of Scratch, other sources of qualitative 
data, particularly interviews, have already proven to be highly 
useful for gaining a deeper understanding of online coding 
communities (Dabbish et al., 2012). By analyzing qualitative 
data, educators can identify recurring themes and motivations 
that drive engagement, such as features that particularly 
resonate with students or elements of online educational 
platforms that foster learning. Therefore, combining 
quantitative Benford analysis with conventional student 
engagement metrics including qualitative data, for example, 
from student surveys and interviews is expected to be a fruitful 
approach to broadening our understanding of online learning 
activities beyond the Scratch community. This approach will 
not only enhance the interpretation of statistical analyses, 
including leading digit distributions, but also inform the 
design of various educational platforms to facilitate more 
effective and engaging learning experiences on a variety of 
educational platforms. 

CONCLUSION 

Our study using Benford’s law revealed a highly significant 
difference between project viewing/playing and code remixing 
in the online Scratch community. This distinction in 
conformity to Benford’s law is validated by multiple 
independent statistical analyses. Given that the extent of 
conformity to Benford’s law has been utilized in various 
artificial intelligence applications (e.g., Caffarini et al., 2022; 
Hsu & Berisha, 2022), and artificial intelligence has been 
employed to study code-learning behaviors in supervised 
settings (e.g., Lin et al., 2024), our findings suggest that 
combining Benford’s law and artificial intelligence presents a 
promising approach to advancing our understanding of 
autonomous code-learning behaviors and peer interactions in 
open online coding communities. These avenues of research 

https://snap.berkeley.edu/
https://thunkable.com/solutions/education/
https://studio.code.org/projects/public
https://studio.code.org/projects/public
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are anticipated to foster new opportunities for optimizing the 
content and design of online coding platforms to benefit 
millions of users engaged in autonomous learning. 
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APPENDIX A 

 

 

 

 

 
Figure A1. Selector graph for recursive pagination (the filled circles indicate nodes for recursive extension of the algorithmic 
paths) 

Table A1. Standardized residuals of each leading digit from Pearson’s χ² test 
Category User engagement 1 2 3 4 5 6 7 8 9 

Animations 

Loves –0.35 2.21 2.12 –0.56 0.54 –1.60 –1.08 –2.54 –1.00 
Favorites 1.26 1.72 1.83 0.74 –0.35 –2.20 –2.45 –2.53 –2.18 
Remixes 8.79 0.88 –1.12 –3.05 –3.48 –3.01 –2.68 –3.32 –3.22 
Views 1.28 0.15 –1.04 –1.19 –0.55 0.13 1.93 –1.31 –0.35 

Art 

Loves –4.79 2.99 7.07 2.67 2.12 0.22 –2.74 –2.86 –6.08 
Favorites 2.05 9.27 5.18 –0.62 –3.89 –4.90 –4.35 –6.73 –8.05 
Remixes 14.89 –1.22 –3.31 –4.20 –4.89 –4.48 –2.73 –4.40 –4.63 
Views 4.09 –1.80 –3.47 –2.93 –1.47 –0.31 0.37 2.32 2.49 

Games 

Loves 2.45 6.90 1.46 –0.52 –2.42 –3.33 –3.77 –4.52 –5.27 
Favorites 3.85 7.49 0.97 –1.26 –2.01 –4.53 –5.12 –4.94 –5.20 
Remixes 11.10 1.01 –2.99 –2.81 –4.12 –3.42 –4.11 –3.53 –3.52 
Views –0.77 1.19 –0.53 –0.92 –0.74 –0.04 0.92 1.45 0.29 

Music 

Loves –3.03 0.82 4.10 2.16 1.35 –0.77 –0.51 –2.12 –1.81 
Favorites –2.59 3.26 4.17 1.84 1.32 –0.26 –1.96 –4.12 –4.16 
Remixes 9.70 0.24 –1.09 –3.07 –3.46 –3.97 –3.12 –2.85 –3.22 
Views 0.22 –0.28 –0.38 0.08 –1.76 –0.93 2.34 2.20 –1.04 

Tutorials 

Loves 15.63 3.30 –2.43 –4.72 –5.70 –6.60 –5.38 –6.72 –7.05 
Favorites 15.83 3.53 –2.57 –4.27 –6.77 –6.24 –6.10 –6.57 –6.79 
Remixes 11.51 –1.02 –1.66 –3.76 –3.20 –3.46 –2.81 –3.89 –3.65 
Views 3.33 0.95 –0.31 –1.19 –1.18 –1.68 –2.06 –0.90 –1.30 

Stories 

Loves 22.94 1.30 –3.26 –5.13 –7.99 –9.75 –7.22 –8.56 –9.06 
Favorites 21.62 2.54 –2.14 –6.84 –7.31 –7.71 –9.61 –9.00 –7.66 
Remixes 15.07 –0.80 –2.43 –4.84 –4.05 –5.29 –3.16 –5.21 –5.22 
Views 4.57 1.50 1.01 –1.29 –2.62 –1.51 –1.35 –3.27 –4.18 
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